PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation.

نویسندگان

  • Zhanyun Tang
  • Hongjun Shu
  • Wei Qi
  • Nadir A Mahmood
  • Marc C Mumby
  • Hongtao Yu
چکیده

Loss of sister-chromatid cohesion triggers chromosome segregation in mitosis and occurs through two mechanisms in vertebrate cells: (1) phosphorylation and removal of cohesin from chromosome arms by mitotic kinases, including Plk1, during prophase, and (2) cleavage of centromeric cohesin by separase at the metaphase-anaphase transition. Bub1 and the MEI-S332/Shugoshin (Sgo1) family of proteins protect centromeric cohesin from mitotic kinases during prophase. We show that human Sgo1 binds to protein phosphatase 2A (PP2A). PP2A localizes to centromeres in a Bub1-dependent manner. The Sgo1-PP2A interaction is required for centromeric localization of Sgo1 and proper chromosome segregation in human cells. Depletion of Plk1 by RNA interference (RNAi) restores centromeric localization of Sgo1 and prevents chromosome missegregation in cells depleted of PP2A_Aalpha. Our findings suggest that Bub1 targets PP2A to centromeres, which in turn maintains Sgo1 at centromeres by counteracting Plk1-mediated chromosome removal of Sgo1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shugoshin-1 Balances Aurora B Kinase Activity via PP2A to Promote Chromosome Bi-orientation

Correction of faulty kinetochore-microtubule attachments is essential for faithful chromosome segregation and dictated by the opposing activities of Aurora B kinase and PP1 and PP2A phosphatases. How kinase and phosphatase activities are appropriately balanced is less clear. Here, we show that a centromeric pool of PP2A-B56 counteracts Aurora B T-loop phosphorylation and is recruited to centrom...

متن کامل

Phospho-H2A and Cohesin Specify Distinct Tension-Regulated Sgo1 Pools at Kinetochores and Inner Centromeres

Accurate chromosome segregation requires coordination between the dissolution of sister-chromatid cohesion and the establishment of proper kinetochore-microtubule attachment. During mitosis, sister-chromatid cohesion at centromeres enables the biorientation of and tension across sister kinetochores. The complex between shugoshin and protein phosphatase 2A (Sgo1-PP2A) localizes to centromeres in...

متن کامل

The Aurora kinase Ipl1 maintains the centromeric localization of PP2A to protect cohesin during meiosis

Homologue segregation during the first meiotic division requires the proper spatial regulation of sister chromatid cohesion and its dissolution along chromosome arms, but its protection at centromeric regions. This protection requires the conserved MEI-S332/Sgo1 proteins that localize to centromeric regions and also recruit the PP2A phosphatase by binding its regulatory subunit, Rts1. Centromer...

متن کامل

Sgo1 Regulates Both Condensin and Ipl1/Aurora B to Promote Chromosome Biorientation

Correct chromosome segregation is essential in order to prevent aneuploidy. To segregate sister chromatids equally to daughter cells, the sisters must attach to microtubules emanating from opposite spindle poles. This so-called biorientation manifests itself by increased tension and conformational changes across kinetochores and pericentric chromatin. Tensionless attachments are dissolved by th...

متن کامل

Xenopus Shugoshin 2 regulates the spindle assembly pathway mediated by the chromosomal passenger complex.

Shugoshins (Sgo) are conserved proteins that act as protectors of centromeric cohesion and as sensors of tension for the machinery that eliminates improper kinetochore-microtubule attachments. Most vertebrates contain two Sgo proteins, but their specific functions are not always clear. Xenopus laevis Sgo1, XSgo1, protects centromeric cohesin from the prophase dissociation pathway. Here, we repo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental cell

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 2006